
Security Assessment

BitNest
CertiK Assessed on May 29th, 2024



BITNEST

CertiK Assessed on May 29th, 2024

BitNest

The security assessment was prepared by CertiK, the leader in Web3.0 security.

Project Summary

Executive Summary

TYPES
DeFi

ECOSYSTEM
Binance Smart Chain

(BSC)

METHODS
Formal Verification, Manual Review, Static Analysis

LANGUAGE
Solidity

TIMELINE
Delivered on 05/29/2024

KEY COMPONENTS
N/A

CODEBASE
https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F32

0fB57526e#code

View All in Codebase Page

Project Name BitNest Network Smart Contract Ecosystem

Description The smart contract code of the BitNest repository implements
a lending protocol with the functions of providing lending and
circulation. The ecosystem has smart contracts and
decentralized technology, which realizes trustless automated
transaction management and solves the high cost, low
efficiency and centralized risk problems of traditional
transactions.

Core components Bit Loop Smart Contract:

Function: A money market lending protocol based on the
BSC network, which has the function of providing lending. All
assets lent and borrowed generate interest according to the
set parameters.

BitNest Savings Box Function:

A flash exchange protocol based on the BSC network, which
can realize a mechanism for quickly exchanging
cryptocurrencies. One cryptocurrency can be quickly
exchanged for another cryptocurrency through this system,
and the exchanged assets are returned according to the set
parameters.

BitNest Savings Function:

A savings protocol based on the BSC network, which
provides liquidity with the characteristics of automated
execution. Both deposited and withdrawn assets have cross-
chain interactive verification.

SUMMARYE T I K

Y E R

EO
e

人个

https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F32
https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F320fB57526e#code
https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F320fB57526e#code
https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F320fB57526e#code


Vulnerability Summary

4
Total Findings

2
Resolved

0
Mitigated

0
Partially Resolved

2
Acknowledged

0
Declined

0

1

0

2

1

Critical

Major

Medium

Minor

Informational

1 Resolved

1 Resolved, 1 Acknowledged

1 Acknowledged

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

Medium risks may not pose a direct risk to users’ funds,
but they can affect the overall functioning of a platform.

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.



E T I K TABLE OF CONTENTS BITNEST

TABLE OF CONTENTS BITNEST

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

BNC-01 : Centralization Risks in BitNest.sol

BNC-03 : Unused Return Value

BNC-04 : Third-Party Dependency Usage

BNC-05 : Concerns on Approve Max

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer



E T I K CODEBASE BITNEST

CODEBASE BITNEST

Repository

https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F320fB57526e#code

https://bscscan.com/address/0xFCc442275A2620E40F17598F9987F320fB57526e#code


E T I K AUDIT SCOPE BITNEST

AUDIT SCOPE BITNEST

1 file audited 1 file with Acknowledged findings

ID Repo File SHA256 Checksum

BNC mainnet contracts/BitNest.sol f04bd741314e3c1cec04bd1bf4a64b9fac20e4
7e39ac6af82a24cd7f4698773b



E T I K APPROACH & METHODS BITNEST

APPROACH & METHODS BITNEST

This report has been prepared for BitNest to discover issues and vulnerabilities in the source code of the BitNest project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better
serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.



E T I K FINDINGS BITNEST

FINDINGS BITNEST

4
Total Findings

0
Critical

1
Major

0
Medium

2
Minor

1
Informational

This report has been prepared to discover issues and vulnerabilities for BitNest. Through this audit, we have uncovered 4

issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

BNC-01

BNC-03

BNC-04

BNC-05

Centralization Risks In BitNest.Sol

Unused Return Value

Third-Party Dependency Usage

Concerns On Approve Max

Centralization

Volatile Code

Design Issue

Coding Style

● Resolved

● Resolved

Acknowledged

AcknowledgedInformational

Minor

Minor

Major



E T I K BNC-01 BITNEST

BNC-01 CENTRALIZATION RISKS IN BITNEST.SOL

Category Severity Location Status

Centralization Major contracts/BitNest.sol: 19, 36 Resolved

Description

In the contract BitNest DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram below. Any

compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and set token id.

Authenticated Role

DEFAULT_ADMIN_ROLE

In the contract BitNest OPERATOR ROLE has authority over the functions shown in the diagram below. Any

compromise to the OPERATOR ROLE account may allow the hacker to take advantage of this authority and increase liquidity.

External Calls

IERC20.balanceOf

Internal Calls

increaseLiquidity

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of
decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Authenticated Role

OPERATOR ROLE

State Variables

tokenIdsetTokenId

loop

Function

Function

the role

the role



E T I K BNC-01 BITNEST

Timelock and Multi sign (⅔ , *) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

。 A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

。 A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.
OR

Remove the risky functionality.

Alleviation

The team renounced DEFAULT_ADMIN_ROLE role and resolved the issue:

https://bscscan.com/tx/0x378436b7503a0f6d95a5605e1d7735ed1774195d88091fba635c01d342376f6a

https://bscscan.com/tx/0x378436b7503a0f6d95a5605e1d7735ed1774195d88091fba635c01d342376f6a


E T I K BNC-03 BITNEST

BNC-03 UNUSED RETURN VALUE

Category Severity Location Status

Volatile Code Minor contracts/BitNest.sol: 16, 24~33 Resolved

Description

The smart contract does not check or store the return value of an external call in a local or state variable, which may

introduce vulnerabilities due to the unhandled outcome.

16 IERC20(USDT) .approve(address(PositionManager), type(uint256) .max);

24 PositionManager.increaseLiquidity(

25 IncreaseLiquidityParams({

26 tokenId : tokenId,

27 amount0Desired : usdtAmount,

28 amount1Desired : 0,

29 amount0Min : usdtAmount,

30 amount1Min : 0,

31 deadline : block.timestamp

32 })

33 );

Recommendation

It is suggested to ensure proper error handling by checking or using the return values of all external function calls, and

storing them in appropriate local or state variables if necessary.

Alleviation

[BitNest Team, 05/29/2024]: The return values of externally called contract functions are not used. Contract methods

execute atomically, so if an external call fails, the execution of the contract method will rollback. Therefore, there is no need
to check the return values.



E T I K BNC-04 BITNEST

BNC-04 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design Issue Minor contracts/BitNest.sol: 10, 11 Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

10 address public constant USDT = 0x55d398326f99059fF775485246999027B3197955;

The contract BitNest interacts with third party contract with IERC20 interface via .

11 IPositionManager public constant PositionManager = IPositionManager(

0x46A15B0b27311cedF172AB29E4f4766fbE7F4364);

The contract BitNest interacts with third party contract with IPositionManager interface via PositionManager .

Recommendation

The auditors understood that the business logic requires interaction with third parties. It is recommended for the team to
constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[BitNest Team, 05/29/2024]: These two contracts have been deployed for many years and carry low risk.

USDT



E T I K BNC-05 BITNEST

BNC-05 CONCERNS ONAPPROVE MAX

Category Severity Location Status

Coding Style Informational contracts/BitNest.sol: 16 Acknowledged

Description

In the auditing codebase, there is an instance where attempting to approve the maximum amount occurs during the contract

setup. While this approach may aim to optimize gas usage, it raises concerns about potential fund loss issues if a specific

role in the contract is compromised.

16 IERC20(USDT) .approve(address(PositionManager), type(uint256) .max);

Recommendation

We recommend approving token expenses based on the tokens required for each operation to enhance security practices.

Alleviation

[BitNest Team, 05/29/2024]: The amount of USDT authorized to the PancakeV3PositionManager contract is 2^256-1. Since
PancakeV3PositionManager is essentially risk-free, the large authorization amount will not lead to any risks.



E T I K FORMAL VERIFICATION BITNEST

FORMAL VERIFICATION BITNEST

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of contracts derived from AccessControl v4.4

We verified properties of the public interface of contracts that provide an AccessControl-v4.4 compatible API. This involves:

The hasRole function, which returns if an account has been granted a specific .

The getRoleAdmin function, which returns the admin role that controls a specific .

The grantRole revokeRole functions, which are used for granting a to an account and revoking a

role from an account , respectively.

The renounceRole function, which allows the calling account to revoke a from itself.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

accesscontrol-renouncerole-revert-not-sender

accesscontrol-getroleadmin-change-state

accesscontrol-hasrole-succeed-always

accesscontrol-hasrole-change-state

accesscontrol-getroleadmin-succeed-always

accesscontrol-default-admin-role

accesscontrol-renouncerole-succeed-role-renouncing

accesscontrol-grantrole-correct-role-granting

accesscontrol-revokerole-correct-role-revoking

Reverts When Caller Is Not the Confirmation

Address

Function Does Not Change State

Function Always Succeeds

Function Does Not Change State

Function Always Succeeds

AccessControl Default Admin Role Invariance

Successfully Renounces Role

Correctly Grants Role

Correctly Revokes Role

renounceRole

getRoleAdmin

renounceRole

getRoleAdmin

revokeRole

grantRole

hasRole

hasRole

role

true role

role

role

and



E T I K FORMAL VERIFICATION BITNEST

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract BitNest (contracts/BitNest.sol) In Commit
0xfcc442275a2620e40f17598f9987f320fb57526e

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender

accesscontrol-renouncerole-succeed-role-renouncing

True

True

getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-change-state

accesscontrol-getroleadmin-succeed-always

True

True

Detailed Results for Function

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always

accesscontrol-hasrole-change-state

True

True

DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function

Detailed Results for Function

renounceRole

hasRole



E T I K FORMAL VERIFICATION BITNEST

Detailed Results for Function

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function

grantRole



E T I K APPENDIX BITNEST

APPENDIX BITNEST

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be
improved to make the code more understandable and maintainable.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and
may result in vulnerabilities.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not
covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the
semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

。 We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well
as contract properties that are maintained by every observable state transition. Observable state transitions occur when the
contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed



E T I K APPENDIX BITNEST

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written [] ) and "eventually" (written <> ), we use
the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition , which refers to a function’s parameters, return values, and both and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition , which refers to both and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed AccessControl-v4.4 Properties

Properties related to function

accesscontrol-renouncerole-revert-not-sender

The renounceRole function must revert if the caller is not the same as account .

Specification:

reverts_when account != msg .sender;

accesscontrol-renouncerole-succeed-role-renouncing

After execution, renounceRole must ensure the caller no longer has the renounced role.

Specification:

ensures !hasRole(role, account);

Properties related to function

accesscontrol-getroleadmin-change-state

The getRoleAdmin function must not change any state variables.

Specification:

renounceRole

getRoleAdmin

\old

cond

cond

cond

\old

\oldcond



E T I K APPENDIX BITNEST

assignable \nothing;

accesscontrol-getroleadmin-succeed-always

The getRoleAdmin function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function

accesscontrol-hasrole-change-state

The hasRole function must not change any state variables.

Specification:

assignable \nothing;

accesscontrol-hasrole-succeed-always

The hasRole function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function

accesscontrol-default-admin-role

The default admin role must be invariant, ensuring consistent access control management.

Specification:

invariant DEFAULT_ADMIN_ROLE() == 0x00;

Properties related to function

accesscontrol-grantrole-correct-role-granting

After execution, grantRole must ensure the specified account has the granted role.

Specification:

DEFAULT_ADMIN_ROLE

grantRole

hasRole



E T I K APPENDIX BITNEST

ensures hasRole(role, account);

Properties related to function

accesscontrol-revokerole-correct-role-revoking

After execution, revokeRole must ensure the specified account no longer has the revoked role.

Specification:

ensures !hasRole(role, account);

revokeRole



E T I K DISCLAIMER BITNEST

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, ORANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITHALL

FAULTS AND DEFECTS WITHOUT WARRANTY OFANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OFANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S ORANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR



E T I K DISCLAIMER BITNEST

UNDERTAKING, AND MAKES NO REPRESENTATION OFANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THATANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIEDAS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILLASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I)ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENTAND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED ASA RESULT OF THE USE OF ANY

CONTENT, OR (II)ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNINGANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BYANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OFANY THEREOF, SHALL BEA THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANYACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTIONAGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANYACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENTARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OFANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONSAND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTIONAGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANYASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHERADVICE.



Securing theWeb3World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

BitNest Security Assessment CertiK Assessed on May 29th, 2024 Copyright © CertiK

CertiK

https://www.twitter.com/CertiK

	BitNest
	BitNest
	Formalism for property specifications


